Enhanced dendritic activity in awake rats.

نویسندگان

  • Masanori Murayama
  • Matthew E Larkum
چکیده

Almost nothing is known about dendritic activity in awake animals and even less about its relationship to behavior. The tuft dendrites of layer 5 (L5) pyramidal neurons lie in layer 1, where long-range axons from secondary thalamic nuclei and higher cortical areas arrive. This class of input is very dependent on active thalamo-cortical loops and activity in higher brain areas and so is likely to be heavily influenced by the conscious state of the animal. If, as has been suggested, the dendrites of pyramidal neurons actively participate in this process, dendritic activity should greatly increase in the awake state. Here, we measured calcium activity in L5 pyramidal neuron dendrites using the "periscope" fiberoptic system. Recordings were made in the sensorimotor cortex of awake and anesthetized rats following sensory stimulation of the hindlimb. Bi-phasic dendritic responses evoked by hindlimb stimulation were extremely dependent on brain state. In the awake state, there was a prominent slow, delayed response whose integral was on average 14-fold larger than in the anesthetized state. Moreover, the dramatic increases in dendritic activity closely correlated to the strength of subsequent hindlimb movement. These changes were confined to L5 pyramidal dendrites and were not reflected in the response of layer 2/3 (L2/3) neurons to air-puff stimuli in general (which actually decreased in the awake state). The results demonstrate that the activity of L5 pyramidal dendrites is a neural correlate of awake behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allicin attenuates tunicamycin-induced cognitive deficits in rats via its synaptic plasticity regulatory activity

Objective(s): To illuminate the functional effects of allicin on rats with cognitive deficits induced by tunicamycin (TM) and the molecular mechanism of this process. Materials and Methods: 200–250 g male SD rats were divided into three groups at random: control group (n=12), TM group (5 μl, 50 μM, i.c.v, n=12), and allicin treatment group (180 mg/kg/d with chow diet, n=12). After 16 weeks of a...

متن کامل

Layer-specific high-frequency action potential spiking in the prefrontal cortex of awake rats

Cortical pyramidal neurons show irregular in vivo action potential (AP) spiking with high-frequency bursts occurring on sparse background activity. Somatic APs can backpropagate from soma into basal and apical dendrites and locally generate dendritic calcium spikes. The critical AP frequency for generation of such dendritic calcium spikes can be very different depending on cell type or brain ar...

متن کامل

Endogenous histamine facilitates long-term potentiation in the hippocampus during walking.

Long-term potentiation (LTP) in hippocampal CA1 depends on the behavioral state of LTP induction. We hypothesize that histaminergic activity in the septohippocampal system, which is active during walking compared with other behavioral states, is responsible for the behavioral dependence of LTP. Field basal-dendritic EPSPs of CA1 pyramidal cells were recorded in freely behaving rats, and LTP was...

متن کامل

Manganese-enhanced MRI of layer-specific activity in the visual cortex from awake and free-moving rats

Cortical responses to visual stimulation have been studied extensively in the rodent, but often require post-stimulation ex vivo examination of the tissue. Here, we test the hypothesis that visual stimulus-dependent cortical activity from awake and free-moving rats can be encoded following systemically administered MnCl(2), and activity subsequently readout using manganese-enhanced MRI (MEMRI),...

متن کامل

A Miniature Head-Mounted Neurotechnique Two-Photon Microscope: High-Resolution Brain Imaging in Freely Moving Animals

lution in the brain of awake, behaving animals would 69120 Heidelberg therefore be of great utility for studying the cellular com-Germany putations underlying cortical function. Two major obstacles make it difficult to apply optical microscopy to awake animals. First, and applicable to Summary both the anesthetized and awake brain, is strong scattering of light by neural tissue. This problem is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 48  شماره 

صفحات  -

تاریخ انتشار 2009